#Propriété apparemment évidente, cependant elle se révèle fort utile dans certains énoncés ne présentant pas l'équation différentielle directement (comme ci-dessous).
#Source : Hans Amble
#Preuve de la linéarité de l'équation différentielle d'ordre 1 (la preuve pour l'ordre 2 s'effectue de la même manière) / Si la fonction proposée ne fonctionne pas dans cette démonstration, on parle alors d'une équation différentielle non linéaire.
#Signification du terme : Variation de la constante (on a remplacé la constante λ par une fonction λ(x) qui est à déterminer)
/image%2F2301540%2F20210822%2Fob_bbfb6f_imageintro.jpg)
/image%2F2301540%2F20240726%2Fob_a2efd5_1.jpg)
/image%2F2301540%2F20240726%2Fob_ec73af_2.jpg)
/https%3A%2F%2Fi.ytimg.com%2Fvi%2FeBSp4D5OWYA%2Fhqdefault.jpg)
/image%2F2301540%2F20240726%2Fob_937e49_3.jpg)
/image%2F2301540%2F20240726%2Fob_59c2bd_4.jpg)
/image%2F2301540%2F20240726%2Fob_47804e_5.jpg)
/image%2F2301540%2F20240703%2Fob_bcc089_d4.jpg)
/image%2F2301540%2F20230330%2Fob_d4c43f_equationdifferentielelineairepreuve.jpg)
/image%2F2301540%2F20240726%2Fob_098387_6.jpg)
/image%2F2301540%2F20240726%2Fob_65d1e4_7.jpg)
/image%2F2301540%2F20240703%2Fob_24ff93_d5.jpg)
/image%2F2301540%2F20230330%2Fob_7b3598_vc.jpg)
/image%2F2301540%2F20240703%2Fob_5a8338_d6.jpg)
/image%2F2301540%2F20240703%2Fob_8ae486_d7.jpg)
/image%2F2301540%2F20230315%2Fob_9cc738_coursdiff30.jpg)
/image%2F2301540%2F20240703%2Fob_8cbe5d_d8.jpg)
/image%2F2301540%2F20240703%2Fob_b24253_d9.jpg)
/image%2F2301540%2F20230319%2Fob_73bc99_b1.jpg)
/image%2F2301540%2F20230319%2Fob_c363e0_b2.jpg)
/image%2F2301540%2F20230319%2Fob_e67622_b3.jpg)
/image%2F2301540%2F20230319%2Fob_a5a90d_b4.jpg)
/image%2F2301540%2F20230319%2Fob_484b77_b5partiedemo.jpg)
/image%2F2301540%2F20230319%2Fob_84478e_b6.jpg)
/image%2F2301540%2F20230319%2Fob_11ada4_b7.jpg)
/image%2F2301540%2F20230319%2Fob_2e919f_b8.jpg)
/image%2F2301540%2F20230319%2Fob_931e62_b9.jpg)
/image%2F2301540%2F20230319%2Fob_b184cc_b10solutionevidente.jpg)
/image%2F2301540%2F20230319%2Fob_77b5d6_b11.jpg)
/image%2F2301540%2F20230319%2Fob_01c912_b12solutionevidente.jpg)
/image%2F2301540%2F20230319%2Fob_1c5029_b13.jpg)
/image%2F2301540%2F20230319%2Fob_1aeada_b14.jpg)
/image%2F2301540%2F20230319%2Fob_ceba58_b15techniquetableaupoura-x-constante.jpg)
/image%2F2301540%2F20230319%2Fob_c30d0d_b16dirreeeeeeeeetechniquedeidentificat.jpg)
/image%2F2301540%2F20230319%2Fob_c2fa0e_b17.jpg)
/image%2F2301540%2F20230319%2Fob_f3319e_b18techniquetableauconstante.jpg)
/image%2F2301540%2F20230319%2Fob_4f13ab_b19.jpg)
/image%2F2301540%2F20230319%2Fob_15bde6_b20.jpg)
/image%2F2301540%2F20230319%2Fob_995c33_b21.jpg)
/image%2F2301540%2F20230319%2Fob_5e5fa5_b22.jpg)
/image%2F2301540%2F20230319%2Fob_885d87_b23principesuperposition.jpg)
/image%2F2301540%2F20230319%2Fob_0c42f8_b24.jpg)
/image%2F2301540%2F20230319%2Fob_15abac_b25.jpg)
