Cours particuliers de maths à Lille

Cours particuliers de maths à Lille

Présent sur Lille , La Madeleine , Marcq en Baroeul , Mons en Baroeul , Wasquehal , Croix , Roubaix , Lambersart , Villeneuve d'Ascq , Lomme , Loos etc..

fiches revision 5eme

Publié le par François Montagne
Publié dans : #Mathématiques, #Fiches Révision 5ème
Exemple de symétrie axiale (illustration ci-dessus) , comme si on pouvait plier sur (d) et superposer les deux figures.

Exemple de symétrie axiale (illustration ci-dessus) , comme si on pouvait plier sur (d) et superposer les deux figures.

Exemple de symétrie centrale et de sa construction (illustration ci dessous) :

Exemple de symétrie centrale et de sa construction (illustration ci dessous) :

5ème - Symétrie axiale et symétrie centrale - Différence - Exemple de symétrie axiale - Exemple de symétrie centrale et méthode de construction

Voir les commentaires

Publié le par François Montagne
Publié dans : #Mathématiques, #Fiches Révision 5ème
METHODE 1 : Au compas (lorsque l'on connaît la mesure des 3 côtés). (illustration au dessus)

METHODE 1 : Au compas (lorsque l'on connaît la mesure des 3 côtés). (illustration au dessus)

METHODE 2 : On connaît la mesure de 2 côtés et l'angle compris entre les 2.  (illustration au dessus).

METHODE 2 : On connaît la mesure de 2 côtés et l'angle compris entre les 2. (illustration au dessus).

Lorsque que l'on connaît la longueur d'un côté et deux angles qui lui sont adjacents. On utilise la METHODE 3. Au passage , je finis de tracer mon triangle en décalant l'origine du rapporteur sur le point D en créant une droite d'angle de 65° sécante avec [FE] , l'intersection des deux droites sécantes donne le point F. La construction est alors terminée.

Lorsque que l'on connaît la longueur d'un côté et deux angles qui lui sont adjacents. On utilise la METHODE 3. Au passage , je finis de tracer mon triangle en décalant l'origine du rapporteur sur le point D en créant une droite d'angle de 65° sécante avec [FE] , l'intersection des deux droites sécantes donne le point F. La construction est alors terminée.

5ème - Géométrie du triangle - Constructions de triangles- Méthodes de construction- Nature des triangles - Médiatrice d'un segment - Médiatrice dans un triangle - Hauteur dans un triangle
Un triangle avec 3 côtés de différentes longueurs est appelé triangle scalène ou quelconque

Un triangle avec 3 côtés de différentes longueurs est appelé triangle scalène ou quelconque

5ème - Géométrie du triangle - Constructions de triangles- Méthodes de construction- Nature des triangles - Médiatrice d'un segment - Médiatrice dans un triangle - Hauteur dans un triangle
5ème - Géométrie du triangle - Constructions de triangles- Méthodes de construction- Nature des triangles - Médiatrice d'un segment - Médiatrice dans un triangle - Hauteur dans un triangle
Inégalité triangulaire : (illustration ci-dessous)

Inégalité triangulaire : (illustration ci-dessous)

Dans un triangle , la longueur de chaque côté est inférieure à la somme des deux autres.

Dans un triangle , la longueur de chaque côté est inférieure à la somme des deux autres.

Définition de la médiatrice d'un segment (illustration ci-dessus)et définition de l'équidistance dans une médiatrice (illustration ci-dessous):

Définition de la médiatrice d'un segment (illustration ci-dessus)et définition de l'équidistance dans une médiatrice (illustration ci-dessous):

Définition d'une médiatrice dans un triangle (illustration ci-dessous):

Définition d'une médiatrice dans un triangle (illustration ci-dessous):

Définition d'une hauteur dans un triangle (illustration ci-dessous):

Définition d'une hauteur dans un triangle (illustration ci-dessous):

5ème - Géométrie du triangle - Constructions de triangles- Méthodes de construction- Nature des triangles - Médiatrice d'un segment - Médiatrice dans un triangle - Hauteur dans un triangle

Voir les commentaires

Publié le par François Montagne
Publié dans : #Mathématiques, #Fiches Révision 5ème
#Angles adjacents #Angles opposés par le sommet #Angles complémentaires #Angles supplémentaires #Angles correspondants #Angles alternes-internes #Angles alternes-externes

#Angles adjacents #Angles opposés par le sommet #Angles complémentaires #Angles supplémentaires #Angles correspondants #Angles alternes-internes #Angles alternes-externes

5ème - Angles et parallélisme -
Propriété fondamentale :

Propriété fondamentale :

La propriété est réciproque : Si deux droites sont parallèles alors les angles alternes-internes reposant sur ces droites sont égaux.

La propriété est réciproque : Si deux droites sont parallèles alors les angles alternes-internes reposant sur ces droites sont égaux.

5ème - Angles et parallélisme -
5ème - Angles et parallélisme -
5ème - Angles et parallélisme -

Voir les commentaires

Publié le par François Montagne
Publié dans : #Mathématiques, #Fiches Révision 5ème
5ème - Nombres relatifs et repérage - L'opposé d'un nombre - Comparaison de nombres relatifs - Repère du plan
On dit que l'abscisse de b est -4 , on la note b(-4) / On dit que l'abscisse de a est 2 , on la note a(2)

On dit que l'abscisse de b est -4 , on la note b(-4) / On dit que l'abscisse de a est 2 , on la note a(2)

On obtient l'opposé d'un nombre en changeant son signe.

On obtient l'opposé d'un nombre en changeant son signe.

Représentation des nombres relatifs sur la droite graduée :

Représentation des nombres relatifs sur la droite graduée :

Repère orthogonal et exemple de notation :

Repère orthogonal et exemple de notation :

#abscisse #ordonnée

#abscisse #ordonnée

Voir les commentaires

Publié le par François Montagne
Publié dans : #Mathématiques, #Fiches Révision 5ème
5ème - Probabilités et statistiques - Population - Caractère - Effectif - Fréquences - Diagramme en bâton (ou barre) - Diagramme circulaire (ou camembert) - Histogramme - Moyenne - Moyenne pondérée - Définition d'une expérience aléatoire et exemple - Définition d'un évènement et exemple
Exemple :

Exemple :

Diagramme en bâton , Diagramme circulaire et Histogramme ;

Diagramme en bâton , Diagramme circulaire et Histogramme ;

Moyenne :

Moyenne :

Moyenne pondérée:

Moyenne pondérée:

Qu'est-ce qu'une expérience aléatoire ? (Définition et Exemple):

Qu'est-ce qu'une expérience aléatoire ? (Définition et Exemple):

5ème - Probabilités et statistiques - Population - Caractère - Effectif - Fréquences - Diagramme en bâton (ou barre) - Diagramme circulaire (ou camembert) - Histogramme - Moyenne - Moyenne pondérée - Définition d'une expérience aléatoire et exemple - Définition d'un évènement et exemple
Définition d'un évènement et exemple (évènement dans ce cas : choisir un carte de coeur)  :

Définition d'un évènement et exemple (évènement dans ce cas : choisir un carte de coeur) :

"piger une carte"=prendre une carte au hasard

"piger une carte"=prendre une carte au hasard

Voir les commentaires

1 2 3 4 > >>

AGENCE SUPERPROF

 

François MONTAGNE

 

PROFESSEUR DE MATHS

 

 

PRIMAIRE

 

COLLEGE

 

LYCEE

 

TOUTES SERIES :

 

ES/ L/ S / STT / BAC PRO

 

 

 
 

 

COLLEGE

6 ème

5 ème

4 ème

3 ème

 

 

LYCEE

2 nde

1 ère ES-L

1 ère S

1 ère STMG

Terminale ES-L

Terminale S

Terminale STMG

 

PRESENT SUR 90 COMMUNES DANS LE NORD ET LA METROPOLE LILLOISE : >>>VOIR LA LISTE<<<

 

 

 

 

TAPEZ UN TITRE

 

DE CHAPITRE

 

UN THèME SOUHAITé

 

OU UNE FORMULE

 

DANS LA SECTION

 

"RECHERCHE"

 

EXEMPLES:

 

"Pythagore"

 

"Trigonométrie"

 

"Dérivation" etc...

 

 

 

 

 

 

Page Facebook

Hébergé par Overblog